• 1.

    Liu, J. et al. Framing sustainability in a telecoupled world. Ecol. Soc. 18(2), 26 (2013).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Meyfroidt, P., Rudel, T. K. & Lambin, E. F. Forest transitions, trade, and the global displacement of land use. Proc. Natl. Acad. Sci. 107, 20917–20922 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Lambin, E. F. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. 108, 3465–3472 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Food and Agriculture Organization. FAOSTAT data. Rome: FAO 2020; http://www.fao.org/faostat/en/#homehttp://www.fao.org/faostat/en/#home

  • 5.

    Liu, J. Consumption Patterns and Biodiversity. The Royal Society (2020).

  • 6.

    UNComtrade. United Nations Statistics Division, 2019; https://comtrade.un.org/data/

  • 7.

    Oliveira, G. D. L. & Schneider, M. The politics of flexing soybeans: China, Brazil and global agroindustrial restructuring. J. Peasant Stud. 43, 167–194 (2016).

    Article 

    Google Scholar 

  • 8.

    York, R. & Gossard, M. H. Cross-national meat and fish consumption: Exploring the effects of modernization and ecological context. Ecol. Econ. 48, 293–302 (2004).

    Article 

    Google Scholar 

  • 9.

    Solot, I. B. The Chinese agricultural policy trilemma. Perspectives 7, 36–46 (2006).

    Google Scholar 

  • 10.

    Garrett, R. D. & Rausch, L. L. Green for gold: Social and ecological tradeoffs influencing the sustainability of the Brazilian soy industry. J. Peasant Stud. 43, 461–493 (2016).

    Article 

    Google Scholar 

  • 11.

    Silva, R. F. B. et al. The Sino-Brazilian telecoupled soybean system and cascading effects for the exporting country. Land 6(3), 53 (2017).

    Article 

    Google Scholar 

  • 12.

    DeFries, R. S., Uriarte, M., Rudel, T. & Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 3, 178–181 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 13.

    Macedo, M. N. et al. Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc. Natl. Acad. Sci. 109, 1341–1346 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Nepstad, D. et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 344, 1118–1123 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Gasparri, N. I. & de Waroux, Y. L. P. The coupling of South American soybean and cattle production frontiers: New challenges for conservation policy and land change science. Conserv. Lett. 8, 290–298 (2015).

    Article 

    Google Scholar 

  • 16.

    Liu, J. Integration across a metacoupled world. Ecol. Soc. 22, 29 (2017).

    Article 

    Google Scholar 

  • 17.

    Liu, J. et al. China’s environment on a metacoupled planet. Annu. Rev. Environ. Resour. 43, 1–34 (2018).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Herzberger, A., Chung, M. G., Kapsar, K., Frank, K. A. & Liu, J. Telecoupled food trade affects pericoupled trade and intracoupled production. Sustainability 11, 2908 (2019).

    Article 

    Google Scholar 

  • 19.

    Dou, Y. et al. Understanding how smallholders integrated into pericoupled and telecoupled systems. Sustainability 12(4), 1596 (2020).

    Article 

    Google Scholar 

  • 20.

    Tromboni, F. et al. Macrosystems as metacoupled human and natural systems. Front. Ecol. Environ. 19(1), 20–29 (2021).

    Article 

    Google Scholar 

  • 21.

    Zhao, Z. et al. Synergies and tradeoffs among sustainable development goals across boundaries in a metacoupled world. Sci. Total Environ. 751, 141749 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Hovis, C. L., Dou, Y., Herzberger, A. & Liu, J. Through the lens of telecoupling and metacoupling: New perspectives for global sustainability. Sustainability 13(5), 2953 (2021).

    Article 

    Google Scholar 

  • 23.

    Zhang, J. et al. Sustainability evaluation on the grain to green program in the Hexi Corridor of China: A metacoupled system perspective. Sustainability 13(3), 1498 (2021).

    Article 

    Google Scholar 

  • 24.

    Xu, Z. et al. Impacts of irrigated agriculture on food-energy-water-CO2 nexus across metacoupled systems. Nat. Commun. 11, 5837 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Carlson, A. K., Taylor, W. W., Rubenstein, D. I., Levin, S. A. & Liu, J. Global marine fishing across space and time. Sustainability 12, 4714 (2020).

    Article 

    Google Scholar 

  • 26.

    Estimativas de Comércio Exterior do Agronegócio Brasileiro (AGROSTAT—Ministry of Agriculture, accessed November 2020); http://indicadores.agricultura.gov.br/agrostat/index.htm

  • 27.

    Dou, Y. et al. Land-use changes in distant places: Implementation of a Telecoupling Agent-Based Model. J. Artif. Soc. Soc. Simul. 23, 11 (2020).

    Article 

    Google Scholar 

  • 28.

    Dou, Y. et al. Land-use change across distant places: Design of telecoupling agent-based model. J. Land Use Sci. 14, 191–209 (2019).

    Article 

    Google Scholar 

  • 29.

    Richards, P., Pellegrina, H., VanWey, L. & Spera, S. Soybean development: The impact of a decade of agricultural change on urban and economic growth in Mato Grosso, Brazil. PLoS ONE 10(4), e0122510 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 30.

    Picoli, M. C. A. et al. Impacts of public and private sector policies on soybean and pasture expansion in Mato Grosso—Brazil from 2001 to 2017. Land 9(1), 20 (2020).

    Article 

    Google Scholar 

  • 31.

    Song, X. P. et al. Massive soybean expansion in South America since 2000 and implications for conservation. Nat. Sustain. https://doi.org/10.1038/s41893-021-00729-z (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Martinelli, L. A., Batistella, M., Silva, R. F. B. & Moran, E. Soy expansion and socioeconomic development in municipalities of Brazil. Land 6(3), 62 (2017).

    Article 

    Google Scholar 

  • 33.

    Silva, R. F. B., Batistella, M., Moran, E., Celidonio, O. L. M. & Millington, J. D. A. The soybean trap: Challenges and risks for Brazilian producers. Front. Sustain. Food Syst. 4, 12 (2020).

    Article 

    Google Scholar 

  • 34.

    Sá, S. A., Palmer, C. & Falco, S. Dynamics of indirect land-use change: Empirical evidence from Brazil. J. Environ. Econ. Manag. 65, 377–393 (2013).

    Article 

    Google Scholar 

  • 35.

    Schmidt, J. H., Weidema, B. P. & Brandão, M. A framework for modelling indirect land use change in life cycle assessment. J. Clean. Prod. 99, 230–238 (2015).

    Article 

    Google Scholar 

  • 36.

    Magliocca, N. R., Khuc, Q. V., Bremond, A. & Ellicott, E. Direct and indirect land-use change caused by large-scale land acquisitions in Cambodia. Environ. Res. Lett. 15, 024010 (2020).

    ADS 
    Article 

    Google Scholar 

  • 37.

    Arima, E. Y., Richards, P., Walker, R. & Caldas, M. M. Statistical confirmation of indirect land use change in the Brazilian Amazon. Environ. Res. Lett. 6, 024010 (2011).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Richards, P. D., Walker, R. T. & Arima, E. Y. Spatially complex land change: The indirect effect of Brazil’s agricultural sector on land use in Amazonia. Glob. Environ. Change 29, 1–9 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Henderson, J., Godar, J., Frey, G. P., Borner, J. & Gardner, T. The Paraguayan Chaco at a crossroads: Drivers emerging soybean frontier. Reg. Environ. Change 21, 72 (2021).

    Article 

    Google Scholar 

  • 40.

    Waroux, Y. L. Capital has no homeland: The formation of transnational producer cohorts in South America’s commodity frontiers. Geoforum 105, 131–144 (2019).

    Article 

    Google Scholar 

  • 41.

    IEG/FNP. Agrianual 2017: Anuária da agricultura brasileira (IEG/FNP, São Paulo, 2017).

    Google Scholar 

  • 42.

    Ermgassen, E. K. H. J. et al. The origin, supply chain, and deforestation risk of Brazil’s beef exports. Proc. Natl. Acad. Sci. 117, 317770–331779 (2020).

    Article 
    CAS 

    Google Scholar 

  • 43.

    Millington, J. D. A., Katerinchuck, V., Silva, R. F. B., Victoria, D. C. & Batistella, M. Modelling drivers of Brazilian agricultural change in a telecoupled world. Environ. Model. Softw. 139, 105024 (2021).

    Article 

    Google Scholar 

  • 44.

    Brazilian Institute of Geography and Statistics (IBGE). Pesquisa agrícola municipal (IBGE Sidra—Sistema IBGE de Recuperação Automática, 2019); https://sidra.ibge.gov.br/pesquisa/pam/tabelas

  • 45.

    Araújo, F. A. O. M. & Boaventura, D. M. R. Municipalities of agribusiness in the State of Mato Grosso: Effects and defects of the activity of modern agriculture. Revista Geográfica Acadêmica 14(2), 100–122 (2020).

    Google Scholar 

  • 46.

    Contag (Confederação Nacional dos Trabalhadores na Agricultura). Grupos Argentinos Compram Terra para Soja no Mato Grosso. Contag Agência de Notícias (2008). http://www.contag.org.br/index.php?modulo=portal&acao=interna&codpag=101&id=4267&mt=1&nw=1

  • 47.

    Hage, F. A. S., Peixoto, M. & Vieira Filho, J. E. R. Aquisição de terras por estrangeiros no Brasil: Uma avaliação jurídica e econômica. Textos para Discussão/Ipea (2012). http://repositorio.ipea.gov.br/bitstream/11058/1001/1/TD_1795.pd

  • 48.

    Cadore, F. Aquisição de terras por estrangeiros na ótica do produtor rural. Canal Rural (2012). https://www.canalrural.com.br/noticias/opiniao-noticias/aquisicao-terras-estrangeiros-otica-produtor-rural/

  • 49.

    Silva, R. F. B. et al. Three decades of changes in Brazilian municipalities and their food production systems. Land 9(11), 422 (2020).

    Article 

    Google Scholar 

  • 50.

    Lopes, G. R., Lima, M. G. B. & Reis, T. N. P. Maldevelopment revisited: Inclusiveness and social impacts of soy expansion over Brazil’s Cerrado in Matopiba. World Dev. 139, 105316 (2021).

    Article 

    Google Scholar 

  • 51.

    Tobler, W. R. A computer movie simulating urban growth in the Detroit Region. Econ. Geogr. 46, 234–240 (1970).

    Article 

    Google Scholar 

  • 52.

    Okinyemi, F. O. & Adejumo, O. O. Government policies and entrepreneurship phases in emerging economies: Nigeria and South Africa. J. Glob. Entrep. Res. 8, 35 (2018).

    Article 

    Google Scholar 

  • 53.

    Elhorst, J. P., Gross, M. & Tereanu, E. Cross-sectional dependence and spillovers in space and time: Where spatial econometrics and global var models meet. J. Econ. Surv. 35(1), 192–226 (2021).

    Article 

    Google Scholar 

  • 54.

    Guan, H. & Li, Q. Spatial spillover effects of economic growth based on high-speed railways in Northeast China. Complexity 2021, 8831325 (2021).

    Google Scholar 

  • 55.

    Bai, J. & Li, K. Dynamic spatial panel data models with common shocks. J. Econom. 224, 134–160 (2021).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 56.

    Vega, S. H. & Elhorst, J. P. The SLX model. J. Reg. Sci. 55, 339–363 (2015).

    Article 

    Google Scholar 

  • 57.

    Takagi, D. & Shimada, T. A spatial regression analysis on the effect of neighborhood-level trust on cooperative behaviors: Comparison with a multilevel regression analysis. Front. Psychol. 10, 2799 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    LeSage, J. P. What regional scientists need to know about spatial econometrics. SSRN https://doi.org/10.2139/ssrn.2420725 (2014).

    Article 

    Google Scholar 

  • 59.

    Tientao, A., Legros, D. & Pichery, M. C. Technology sipillover and TFP growth: A spatial Durbin model. Int. Econ. 145, 21–31 (2016).

    Article 

    Google Scholar 

  • 60.

    Zhu, Z. & Wu, Y. Estimation and prediction of a class of convolution-based spatial nonstationary models for large spatial data. J. Comput. Graph. Stat. 19, 74–95 (2010).

    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • 61.

    Granger, C. W. J. & Newbold, P. Spurious regression in econometrics. J. Econom. 2, 111–120 (1974).

    MATH 
    Article 

    Google Scholar 

  • 62.

    García, V. R., Gaspart, F., Kastner, T. & Meyfroidt, P. Agricultural intensification and land use change: Assessing country-level induced intensification, land sparing and rebound effect. Environ. Res. Lett. 15, 085007 (2020).

    ADS 
    Article 

    Google Scholar 

  • 63.

    Engle, R. F. & Granger, C. W. J. Co-integration and error correction: Representation, estimation, and testing. Econometrica 55, 251–276 (1987).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 64.

    Souza, C. M. et al. Reconstructing three decades of land use and land cover in Brazilian biomes with Landsat archive and earth engine. Remote Sens. 12, 2735 (2020).

    ADS 
    Article 

    Google Scholar 

  • 65.

    Brazilian Institute of Geography and Statistics (IBGE). Produto Interno Bruto dos Municípios (IBGE Sidra—Sistema IBGE de Recuperação Automática, 2018); https://sidra.ibge.gov.br/pesquisa/pib-munic/tabelas

  • 66.

    Brazilian Institute of Geography and Statistics (IBGE). Estimativas da População (IBGE Sidra—Sistema IBGE de Recuperação Automática, 2020); https://sidra.ibge.gov.br/pesquisa/estimapop/tabelas

  • 67.

    Bennett, E. M. Changing the agriculture and environment conservation. Nat. Ecol. Evol. 1, 0018 (2017).

    Article 

    Google Scholar 

  • 68.

    Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020).

    Article 

    Google Scholar 

  • 69.

    Pelletier, J., Ngoma, H., Mason, N. M. & Barrett, C. B. Does smallholder maize intensification reduce deforestation? Evidence from Zambia. Glob. Environ. Change 63, 102127 (2020).

    Article 

    Google Scholar 

  • 70.

    Garrett, R. D. et al. Intensification in agriculture-forest frontiers: Land use responses to development and conservation policies in Brazil. Glob. Environ. Change 53, 233–243 (2018).

    Article 

    Google Scholar 

  • 71.

    Paul, C., Techen, A., Robinson, J. S. & Helming, K. Rebound effects in agricultural land and soil management: Review and analytical framework. J. Clean. Prod. 227, 1054–1067 (2019).

    CAS 
    Article 

    Google Scholar 

  • 72.

    Abel, C. et al. The human-environment nexus and vegetation-rainfall sensitivity in tropical drylands. Nat. Sustain. 4, 25–32 (2021).

    Article 

    Google Scholar 

  • 73.

    Jasinski, E., Morton, D. & DeFries, R. Physical landscape correlates of the expansion of the mechanized agriculture in Mato Grosso, Brazil. Earth Interact. 9, 16 (2005).

    Article 

    Google Scholar 

  • 74.

    Weber, E., Hasenack, H. & Ferreira, C. J. S. Adaptação do modelo digital de elevação do SRTM para o sistema de referência oficial brasileiro e recorte por unidade da federação (Porto Alegre, UFRGS Centro de Ecologia, 2004); http://www.ecologia.ufrgs.br/labgeo.

  • 75.

    Fernandes, M. D. E., Gouveia, A. B. & Benini, E. G. Teachers’pay in Brazil: An outlook from the Annual List of Social Information (RAIS). Educ. Pesqui. 38, 339–356 (2012).

    Article 

    Google Scholar 

  • 76.

    Brazilian Institute of Geography and Statistics (IBGE). Pesquisa Pecuária Municipal (IBGE Sidra—Sistema IBGE de Recuperação Automática, 2019); https://sidra.ibge.gov.br/pesquisa/ppm/tabelas/brasil/2019

  • 77.

    LeSage, J. P. An introduction to spatial econometrics. Revue D’économie industrielle 123, 19–44 (2008).

    Article 

    Google Scholar 

  • 78.

    Dantas, R. A., Magalhães, A. M. & Vergolino, J. R. O. Um modelo espacial de demanda habitacional para a Cidade do Recife. Estudos Econômicos 40, 891–916 (2010).

    Google Scholar 

  • 79.

    Hession, S. L. & Moore, N. A spatial regression analysis of the influence of topography on monthly rainfall in East Africa. Int. J. Climatol. 31, 1440–1456 (2011).

    Article 

    Google Scholar 

  • 80.

    Golgher, A. B. & Voss, P. R. How to interpret the coefficients of Spatial Models: Spillovers, direct and indirect effects. Spat. Demogr. 4, 175–205 (2016).

    Article 

    Google Scholar 

  • 81.

    Feng, Y., Wang, X., Du, W. & Liu, J. Effects of Ais pollution control on urban development quality in Chinese cities based on spatial Durbin model. Int. J. Environ. Res. Public Health 15, 2822 (2018).

    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Viña, A., McConnell, W. J., Yang, H., Xu, Z. & Liu, J. Effects of conservation policy on China’s forest recovery. Sci. Adv. 2, e1500965 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 83.

    Bivar, R. et al. Spatial Regression Analysis (Package ‘spatialreg’, 2019); https://github.com/r-spatial/spatialreg/

  • 84.

    Salmerón, R., García, C. B. & García, J. Variance inflation factor and condition number in multiple linear regression. J. Stat. Comput. Simul. 88, 2365–2384 (2018).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 85.

    Cliff, A. D. & Ord, K. K. Spatial Processes: Model and Applications (Pion, 1981).

    MATH 

    Google Scholar 

  • 86.

    Anselin, L. Local indicators of spatial association-LISA. Geogr. Anal. 27, 93–115 (1995).

    Article 

    Google Scholar 

  • 87.

    Lee, C. & Chang, C. New evidence on the convergence of per capita carbon dioxide emissions from panel seemingly unrelated regressions augmented Dickey-Fuller tests. Energy 33, 1468–1475 (2008).

    CAS 
    Article 

    Google Scholar 

  • 88.

    Agunloye, O. K., Shangodoyin, D. K. & Arnab, R. Lag length specification in Engle-Granger cointegration test: A modified Kouck Mean Lag approach based on partial correlation. Stat. Transit. 15, 559–572 (2014).

    Google Scholar 

  • 89.

    MacKenzie, D. I. et al. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence 2nd edn. (Academic Press, 2018).

    MATH 

    Google Scholar 

  • 90.

    Silva, R. F. B., Millington, J. D. A., Moran, E. F., Batistella, M. & Liu, J. Three decades of land-use and land-cover change in mountain regions of the Brazilian Atlantic Forest. Landsc. Urban Plan. 204, 103948 (2020).

    Article 

    Google Scholar 


  • Source link

    Leave a Reply

    Your email address will not be published.